Automatic learning of cost functions for graph edit distance

نویسندگان

  • Michel Neuhaus
  • Horst Bunke
چکیده

Graph matching and graph edit distance have become important tools in structural pattern recognition. The graph edit distance concept allows us to measure the structural similarity of attributed graphs in an error-tolerant way. The key idea is to model graph variations by structural distortion operations. As one of its main constraints, however, the edit distance requires the adequate definition of edit cost functions, which eventually determine which graphs are considered similar. In the past, these cost functions were usually defined in a manual fashion, which is highly prone to errors. The present paper proposes a method to automatically learn cost functions from a labeled sample set of graphs. To this end, we formulate the graph edit process in a stochastic context and perform a maximum likelihood parameter estimation of the distribution of edit operations. The underlying distortion model is learned using an Expectation Maximization algorithm. From this model we finally derive the desired cost functions. In a series of experiments we demonstrate the learning effect of the proposed method and provide a performance comparison to other models. 2006 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-organizing Graph Edit Distance

This paper addresses the issue of learning graph edit distance cost functions for numerically labeled graphs from a corpus of sample graphs. We propose a system of self-organizing maps representing attribute distance spaces that encode edit operation costs. The selforganizing maps are iteratively adapted to minimize the edit distance of those graphs that are required to be similar. To demonstra...

متن کامل

Approximate graph edit distance computation by means of bipartite graph matching

In recent years, the use of graph based object representation has gained popularity. Simultaneously, graph edit distance emerged as a powerful and flexible graph matching paradigm that can be used to address different tasks in pattern recognition, machine learning, and data mining. The key advantages of graph edit distance are its high degree of flexibility, which makes it applicable to any typ...

متن کامل

Error Correcting Graph Matching: On the Influence of the Underlying Cost Function

ÐThis paper investigates the influence of the cost function on the optimal match between two graphs. It is shown that, for a given cost function, there are an infinite number of other cost functions that lead, for any given pair of graphs, to the same optimal error correcting matching. Furthermore, it is shown that well-known concepts from graph theory, such as graph isomorphism, subgraph isomo...

متن کامل

An Exact Graph Edit Distance Algorithm for Solving Pattern Recognition Problems

Graph edit distance is an error tolerant matching technique emerged as a powerful and flexible graph matching paradigm that can be used to address different tasks in pattern recognition, machine learning and data mining; it represents the minimum-cost sequence of basic edit operations to transform one graph into another by means of insertion, deletion and substitution of vertices and/or edges. ...

متن کامل

یادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیک‌های یادگیری معیار فاصله

Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inf. Sci.

دوره 177  شماره 

صفحات  -

تاریخ انتشار 2007